Chapter 18
The Circulatory System: Blood

• Introduction
• Erythrocytes
• Blood types
• Leukocytes
• Platelets
• Hemostasis – the control of bleeding
Functions of Circulatory System

• Transport
 – O_2, CO_2, nutrients, wastes, hormones, and heat

• Protection
 – WBCs, antibodies, and platelets

• Regulation
 – fluid regulation and buffering
Blood

• Adults have 4-6 L of blood
 – plasma, a clear extracellular fluid
 – formed elements (blood cells and platelets)
• Centrifuge blood to separate components
Properties of Blood

• Viscosity - resistance to flow
 – whole blood 5 times as viscous as water

• Osmolarity
 – total molarity of dissolved particles
 • sodium ions, protein, and RBCs
 – high osmolarity
 • causes fluid absorption into blood, raises BP
 – low osmolarity
 • causes fluid to remain in tissues, may result in edema
Formed Elements of Blood
Plasma and Plasma Proteins

• Plasma – liquid portion of blood
 – serum remains after plasma clots
• 3 major categories of plasma proteins
 – albumins - most abundant
 • contributes to viscosity and osmolarity, influences blood pressure, flow and fluid balance
 – globulins (antibodies)
 • provide immune system functions
 • alpha, beta and gamma globulins
 – fibrinogen
 • precursor of fibrin threads that help form blood clots
• Plasma proteins formed by liver
 – except globulins (produced by plasma cells)
Nonprotein Components of Plasma

- Nitrogenous compounds
 - amino acids
 - from dietary protein or tissue breakdown
 - nitrogenous wastes (urea)
 - toxic end products of catabolism
 - normally removed by the kidneys

- Nutrients
 - glucose, vitamins, fats, minerals, etc

- O_2 and CO_2

- Electrolytes
 - Na^+ makes up 90% of plasma cations
Iron Absorption, Transport, Storage

1. Mixture of Fe$^{2+}$ and Fe$^{3+}$ is ingested

2. Stomach acid converts Fe$^{3+}$ to Fe$^{2+}$

3. Fe$^{2+}$ binds to gastroferritin

4. Gastroferritin transports Fe$^{2+}$ to small intestine and releases it for absorption

5. In blood plasma, Fe$^{2+}$ binds to transferrin

6. In liver, some transferrin releases Fe$^{2+}$ for storage

7. Fe$^{2+}$ binds to apoferritin to be stored as ferritin

8. Remaining transferrin is distributed to other organs where Fe$^{2+}$ is used to make hemoglobin, myoglobin, etc.
Nutritional Needs for Erythropoiesis

- Vitamin B12 and folic acid
 - rapid cell division

- Vitamin C and copper
 - cofactors for enzymes synthesizing RBCs
Erythrocytes (RBCs)

- Disc-shaped cell with thick rim
 - 7.5 μM diameter and 2.0 μm thick at rim
 - blood type determined by surface glycoprotein and glycolipids
 - cytoskeletal proteins give membrane durability
Erythrocytes (RBCs) Function

• Gas transport - major function
 – increased surface area/volume ratio
 • due to loss of organelles during maturation
 • increases diffusion rate of substances
 – 33% of cytoplasm is hemoglobin (Hb)
 • O₂ delivery to tissue and CO₂ transport to lungs

• Carbonic anhydrase (CAH)
 – produces carbonic acid from CO₂ and water
 – important role in gas transport and pH balance
Erythrocytes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Hemoglobin (Hb) Structure

• Heme groups
 – conjugate with each protein chain
 • hemoglobin molecule can carry four O₂
 – binds oxygen to ferrous ion (Fe²⁺)

• Globins - 4 protein chains
 – 2 alpha and 2 beta chains
 • fetal Hb - gamma replace beta chains; binds O₂ better
Erythrocytes and Hemoglobin

- RBC count and hemoglobin concentration indicate amount of O_2 blood can carry
 - hematocrit (packed cell volume) - % of blood composed of cells
 - men 42-52% cells; women 37-48% cells
 - hemoglobin concentration of whole blood
 - men 13-18g/dL; women 12-16g/dL
 - RBC count
 - men 4.6-6.2 million/μL; women 4-2-5.4 million/μL

- Values are lower in women
 - androgens stimulate RBC production
 - women have periodic menstrual losses
Hemopoiesis

- Adult produces 400 billion platelets, 200 billion RBCs and 10 billion WBCs every day

- Hemopoietic tissues produce blood cells
 - yolk sac produces stem cells
 - colonize fetal bone marrow, liver, spleen and thymus
 - liver stops producing blood cells at birth
 - spleen remains involved with WBC production
 - lymphoid hemopoiesis occurs in widely distributed lymphoid tissues (thymus, tonsils, lymph nodes, spleen and peyers patches in intestines)
 - red bone marrow
 - pluripotent stem cells
 - myeloid hemopoiesis produces RBCs, WBCs and platelets
Erythrocyte Homeostasis

• **Negative feedback control**
 – drop in RBC count causes kidney hypoxemia
 – EPO production stimulates bone marrow
 – RBC count \uparrow in 3 - 4 days

• **Stimulus for erythropoiesis**
 – low levels O_2
 – increase in exercise
 – loss of lung tissue in emphysema
Nutritional Needs for Erythropoiesis

- Iron - key nutritional requirement
 - lost daily through urine, feces, and bleeding
 - men 0.9 mg/day and women 1.7 mg/day
 - low absorption requires consumption of 5-20 mg/day
- dietary iron: ferric (Fe$^{3+}$) and ferrous (Fe$^{2+}$)
 - stomach acid converts Fe$^{3+}$ to absorbable Fe$^{2+}$
 - gastroferritin binds Fe$^{2+}$ and transports it to intestine
 - absorbed into blood and binds to transferrin for transport
 » bone marrow for hemoglobin, muscle for myoglobin
 and all cells use for cytochromes in mitochondria
- liver apoferritin binds to create ferritin for storage
Erythrocyte Production

- 2.5 million RBCs/sec
- Development takes 3-5 days
 - reduction in cell size, increase in cell number, synthesis of hemoglobin and loss of nucleus
- First committed cell - erythrocyte colony forming unit
 - has receptors for erythropoietin (EPO) from kidneys
- Erythroblasts multiply and synthesize hemoglobin
- Discard nucleus to form a reticulocyte
 - named for fine network of endoplasmic reticulum
 - 0.5 to 1.5% of circulating RBCs
Erythrocytes Recycle/Disposal

- RBCs lyse in narrow channels in spleen
- Macrophages in spleen
 - digest membrane bits
 - separate heme from globin
 - globins hydrolyzed into amino acids
 - iron removed from heme
 - heme pigment converted to biliverdin (green)
 - biliverdin converted to bilirubin (yellow)
 - released into blood plasma (kidneys - yellow urine)
 - liver secretes into bile
 » concentrated in gall bladder: released into small intestine; bacteria create urobilinogen (brown feces)
Erythrocytes Recycle/Disposal

- Amino acids
- Iron
- Folic acid
- Vitamin B₁₂

Nutrient absorption

Small intestine

Erythropoiesis in red bone marrow

Erythrocytes circulate for 120 days

Expired erythrocytes break up in liver and spleen

Cell fragments phagocytized

Hemoglobin degraded

- Heme
- Globin

- Biliverdin
- Bilirubin

- Iron
- Storage
- Reuse
- Loss by menstruation, injury, etc.

Hydrolyzed to free amino acids

- Bile
- Feces
Erythrocyte Disorders

• Polycythemia - an excess of RBCs
 – primary polycythemia
 • cancer of erythropoietic cell line in red bone marrow
 – RBC count as high as 11 million/μL; hematocrit 80%
 – secondary polycythemia
 • from dehydration, emphysema, high altitude, or physical conditioning
 – RBC count up to 8 million/μL

• Dangers of polycythemia
 – increased blood volume, pressure, viscosity
 • can lead to embolism, stroke or heart failure
Anemia - Causes

- Inadequate erythropoiesis or hemoglobin synthesis
 - inadequate vitamin B12 from poor nutrition or lack of intrinsic factor (pernicious anemia)
 - iron-deficiency anemia
 - kidney failure and insufficient erythropoietin
 - aplastic anemia - complete cessation

- Hemorrhagic anemias

- Hemolytic anemias
Anemia - Effects

- Tissue hypoxia and necrosis (short of breath and lethargic)
- Low blood osmolarity (tissue edema)
- Low blood viscosity (heart races and pressure drops)
Sickle-Cell Disease

• Hereditary Hb ‘defect’ of African Americans
 – recessive allele modifies hemoglobin structure
 – sickle-cell trait - heterozygous for HbS
 • individual has resistance to malaria
 – HbS indigestible to malaria parasites
 – sickle-cell disease - homozygous for HbS
 • individual has shortened life
 – in low O₂ concentrations HbS causes cell elongation and sickle shape
 – cell stickiness causes agglutination and blocked vessels
 – intense pain; kidney and heart failure; paralysis; stroke
 – chronic hypoxemia reactivates hemopoietic tissue
 » enlarging spleen and bones of cranium
Sickle-Cell Diseased Erythrocyte
Antigens and Antibodies

• Antigens
 – unique molecules on cell surface
 • used to distinguish self from foreign
 • foreign antigens generate immune response

• Antibodies
 – secreted by plasma cells
 • as part of immune response to foreign matter

• Agglutination
 – antibody molecule binding to antigens
 – causes clumping
Blood Types

• RBC antigens
 – agglutinogens; A and B
 – on RBC surface
ABO Group

- Your ABO blood type is determined by presence or absence of antigens (agglutinogens) on RBCs
 - type A person has A antigens
 - type B person has B antigens
 - type AB has both antigens
 - type O has neither antigen
 - most common - type O
 - rarest - type AB
Plasma antibodies

- Antibodies (agglutinins); anti-A and -B
- Appear 2-8 months after birth; at maximum concentration at 10 yr.
 - Anti -A and/or -B (both or none) are in plasma
 - you do not form antibodies against your antigens
- Agglutination
 - each antibody can attach to several foreign antigens at the same time
- Responsible for mismatched transfusion reaction
Agglutination of Erythrocytes
Transfusion Reaction

- Agglutinated RBCs block blood vessels and hemolyze
 - free Hb blocks kidney tubules, causes death
Universal Donors and Recipients

• Universal donor
 – Type O
 – lacks RBC antigens
 – donor’s plasma may have antibodies against recipient’s RBCs
 • may give packed cells (minimal plasma)

• Universal recipient
 – Type AB
 – lacks plasma antibodies; no anti- A or B
Rh Group

- Rh (D) agglutinogens discovered in rhesus monkey in 1940
 - Rh\(^+\) blood type has D agglutinogens on RBCs
 - Rh frequencies vary among ethnic groups

- Anti-D agglutinins not normally present
 - form in Rh\(^-\) individuals exposed to Rh\(^+\) blood
 - Rh\(^-\) woman with an Rh\(^+\) fetus or transfusion of Rh\(^+\) blood
 - no problems with first transfusion or pregnancy
Hemolytic Disease of Newborn

• Occurs if mother has formed antibodies and is pregnant with 2nd Rh+ child
 – Anti-D antibodies can cross placenta

• Prevention
 – RhoGAM given to pregnant Rh- women
 • binds fetal agglutinogens in her blood so she will not form Anti-D antibodies
Hemolytic Disease of Newborn

Rh antibodies attack fetal blood
- causing severe anemia and toxic brain syndrome
Leukocytes (WBCs)

- 5,000 to 10,000 WBCs/\(\mu L\)
- Conspicuous nucleus
- Travel in blood before migrating to connective tissue
- Protect against pathogens
Leukocyte Descriptions

- **Granulocytes**
 - neutrophils (60-70%)
 - fine granules in cytoplasm; 3 to 5 lobed nucleus
 - eosinophils (2-4%)
 - large rosy-orange granules; bilobed nucleus
 - basophils (<1%)
 - large, abundant, violet granules (obscure a large S-shaped nucleus)

- **Agranulocytes**
 - lymphocytes (25-33%)
 - variable amounts of bluish cytoplasm (scanty to abundant); ovoid/round, uniform dark violet nucleus
 - monocytes (3-8%)
 - largest WBC; ovoid, kidney-, or horseshoe-shaped nucleus
Granulocyte Functions

• Neutrophils (↑ in bacterial infections)
 – phagocytosis of bacteria
 – release antimicrobial chemicals

• Eosinophils (↑ in parasitic infections or allergies)
 – phagocytosis of antigen-antibody complexes, allergens and inflammatory chemicals
 – release enzymes to destroy parasites

• Basophils (↑ in chicken pox, sinusitis, diabetes)
 – secrete histamine (vasodilator)
 – secrete heparin (anticoagulant)
Agranulocyte Functions

• Lymphocytes (↑ in diverse infections and immune responses)
 – destroy cells (cancer, foreign, and virally infected cells)
 – “present” antigens to activate other immune cells
 – coordinate actions of other immune cells
 – secrete antibodies and provide immune memory

• Monocytes (↑ in viral infections and inflammation)
 – differentiate into macrophages
 – phagocytize pathogens and debris
 – “present” antigens to activate other immune cells
Complete Blood Count

- Hematocrit
- Hemoglobin concentration
- Total count for RBCs, reticulocytes, WBCs, and platelets
- Differential WBC count
- RBC size and hemoglobin concentration per RBC
Leukocyte Life Cycle

• Leukopoiesis
 – pluripotent stem cells –
 • myeloblasts – form neutrophils, eosinophils, basophils
 • monoblasts form monocytes
 • lymphoblasts form B and T lymphocytes and NK cells
 – T lymphocytes complete development in thymus

• Red bone marrow stores and releases granulocytes and monocytes

• Circulating WBCs do not stay in bloodstream
 – granulocytes leave in 8 hours and live 5 days longer
 – monocytes leave in 20 hours, transform into macrophages and live for several years
 – WBCs provide long-term immunity (decades)
Leukopoiesis
Leukocyte Disorders

• Leukopenia - low WBC count (<5000/µL)
 – causes: radiation, poisons, infectious disease
 – effects: elevated risk of infection

• Leukocytosis = high WBC count (>10,000/µL)
 – causes: infection, allergy and disease
 – differential count - distinguishes % of each cell type

• Leukemia = cancer of hemopoietic tissue
 – myeloid and lymphoid - uncontrolled WBC production
 – acute and chronic - death in months or ≤ 3 years
 – effects - normal cell % disrupted; impaired clotting
Platelets

- Small fragments of megakaryocyte cytoplasm
 - 2-4 μm diameter; contain “granules”
 - amoeboid movement and phagocytosis
- Normal Count - 130,000 to 400,000 platelets/μL
- Functions
 - secrete clotting factors and growth factors for vessel repair
 - initiate formation of clot-dissolving enzyme
 - phagocytize bacteria
 - chemically attract neutrophils and monocytes to sites of inflammation
Platelet Production -Thrombopoiesis

- Stem cells (that develop receptors for thrombopoietin) become megakaryoblasts

- Megakaryoblasts
 - repeatedly replicate DNA without dividing cytoplasm
 - forms gigantic cell called megakaryocyte (100 μm in diameter, remains in bone marrow)

- Megakaryocyte
 - infoldings of cytoplasm splits off cell fragments that enter bloodstream as platelets (live for 10 days)
 - some stored in spleen
Hemostasis

- All 3 pathways involve platelets
Hemostasis - Vascular Spasm

• Causes
 – pain receptors
 • some directly innervate constrictors
 – smooth muscle injury
 – platelets release serotonin (vasoconstrictor)

• Effects
 – prompt constriction of a broken vessel
 • pain receptors - short duration (minutes)
 • smooth muscle injury - longer duration
 – provides time for other two clotting pathways
Hemostasis - Platelet Plug Formation

• Endothelium smooth, coated with prostacyclin

• Platelet plug formation
 – broken vessel exposes collagen
 – platelet pseudopods stick to damaged vessel and other platelets - pseudopods contract and draw walls of vessel together forming a platelet plug
 – platelets degranulate releasing a variety of substances
 • serotonin is a vasoconstrictor
 • ADP attracts and degranulates more platelets
 • thromboxane A₂, an eicosanoid, promotes aggregation, degranulation and vasoconstriction
 – positive feedback cycle is active until break in vessel is sealed
Hemostasis - Coagulation

• Clotting - most effective defense against bleeding
 – conversion of plasma protein fibrinogen into insoluble fibrin threads to form framework of clot

• Procoagulants (clotting factors) are present in plasma
 – activate one factor and it will activate the next to form a reaction cascade

• Extrinsic pathway
 – factors released by damaged tissues begin cascade

• Intrinsic pathway
 – factors found in blood begin cascade (platelet degranulation)
Coagulation Pathways

- **Extrinsic pathway**
 - initiated by tissue thromboplastin
 - cascade to factor VII, V and X (fewer steps)

- **Intrinsic pathway**
 - initiated by factor XII
 - cascade to factor XI to IX to VIII to X

- **Calcium required for either pathway**
Enzyme Amplification in Clotting

- Rapid clotting - each activated cofactor activates many more molecules in next step of sequence
Completion of Coagulation

- Activation of Factor X
 - leads to production of prothrombin activator

- Prothrombin activator
 - converts prothrombin to thrombin

- Thrombin
 - converts fibrinogen into fibrin

- Positive feedback - thrombin speeds up formation of prothrombin activator
Fate of Blood Clots

• Clot retraction occurs within 30 minutes
• Platelet-derived growth factor secreted by platelets and endothelial cells
 – mitotic stimulant for fibroblasts and smooth muscle to multiply and repair damaged vessel
• Fibrinolysis (dissolution of a clot)
 – factor XII speeds up formation of kallikrein enzyme
 – kallikrein converts plasminogen into plasmin, a fibrin-dissolving enzyme (clot buster)
Blood Clot Dissolution

• Positive feedback occurs
• Plasmin promotes formation of kallikrein
Prevention of Inappropriate Clotting

- **Platelet repulsion**
 - platelets do not adhere to prostacyclin-coating

- **Thrombin dilution**
 - by rapidly flowing blood
 - heart slowing in shock can result in clot formation

- **Natural anticoagulants**
 - heparin (from basophils and mast cells) interferes with formation of prothrombin activator
 - antithrombin (from liver) deactivates thrombin before it can act on fibrinogen
Hemophilia

• Genetic lack of any clotting factor affects coagulation

• Sex-linked recessive (on X chromosome)
 – hemophilia A missing factor VIII (83% of cases)
 – hemophilia B missing factor IX (15% of cases)
 note: hemophilia C missing factor XI (autosomal)

• Physical exertion causes bleeding and excruciating pain
 – transfusion of plasma or purified clotting factors
 – factor VIII produced by transgenic bacteria
Coagulation Disorders

• Embolism - clot traveling in a vessel
• Thrombosis - abnormal clotting in unbroken vessel
 – most likely to occur in leg veins of inactive people
 – pulmonary embolism - clot may break free, travel from veins to lungs
• Infarction may occur if clot blocks blood supply to an organ (MI or stroke)
 – 650,000 Americans die annually of thromboembolism
Medicinal Leeches